Literature Note

Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes

This is a literature note auto-generated from bibliographic records.

Author list
  • Kowal, Joanna
  • Arras, Guillaume
  • Colombo, Marina
  • Jouve, Mabel
  • Morath, Jakob Paul
  • Primdal-Bengtson, Bjarke
  • Dingli, Florent
  • Loew, Damarys
  • Tkach, Mercedes
  • Théry, Clotilde
Extracellular vesicles (EVs) have become the focus of rising interest because of their numerous functions in physiology and pathology. Cells release heterogeneous vesicles of different sizes and intracellular origins, including small EVs formed inside endosomal compartments (i.e., exosomes) and EVs of various sizes budding from the plasma membrane. Specific markers for the analysis and isolation of different EV populations are missing, imposing important limitations to understanding EV functions. Here, EVs from human dendritic cells were first separated by their sedimentation speed, and then either by their behavior upon upward floatation into iodixanol gradients or by immuno-isolation. Extensive quantitative proteomic analysis allowing comparison of the isolated populations showed that several classically used exosome markers, like major histocompatibility complex, flotillin, and heat-shock 70-kDa proteins, are similarly present in all EVs. We identified proteins specifically enriched in small EVs, and define a set of five protein categories displaying different relative abundance in distinct EV populations. We demonstrate the presence of exosomal and nonexosomal subpopulations within small EVs, and propose their differential separation by immuno-isolation using either CD63, CD81, or CD9. Our work thus provides guidelines to define subtypes of EVs for future functional studies.

Backlinks

These are the other notes that link to this one.

Aquiles Carattino
Aquiles Carattino
This note you are reading is part of my digital garden. Follow the links to learn more, and remember that these notes evolve over time. After all, this website is not a blog.
© 2024 Aquiles Carattino
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Privacy Policy