Molecular-dynamics simulation of thin-film growth by energetic cluster impact

First published:

Last Edited:

Number of edits:

Langevin-molecular-dynamics simulations of thin-film growth by energetic cluster impact were carried out. The impact of a Mo1043 cluster on a Mo(001) surface was studied for impact energies of 0.1, 1, and 10 eV/atom using the Finnis-Sinclair many-body potential. The characteristics of the collision range from a soft touchdown at 0.1 eV/atom, over a flattening collision at 1 eV/atom, to a meteoric impact at 10 eV/atom. The highest energy impact creates a pressure of about 100 GPa in the impact zone and sends a strong shock wave into the material. The cluster temperature reaches a maximum of 596 K for 0.1 eV/atom, 1799 K for 1 eV/atom, and 6607 K for 10 eV/atom during the first ps after the touchdown. For energies of 1 and 10 eV/atom the cluster recrystallizes after 20 ps. The consecutive collision of 50 Mo1043 clusters with a Mo(001) surface at T=300 K was simulated for the three impact energies. The formation of a porous film is calculated for clusters impinging with low kinetic energy, while for the clusters with the highest energy a dense mirrorlike film is obtained, in good agreement with experiment.

  • Source:
  • Tags:

Backlinks

These are the other notes that link to this one.

Nothing links here, how did you reach this page then?

Comment

Share your thoughts on this note. Comments are not public, they are messages sent directly to my inbox.
Aquiles Carattino
Aquiles Carattino
This note you are reading is part of my digital garden. Follow the links to learn more, and remember that these notes evolve over time. After all, this website is not a blog.
© 2024 Aquiles Carattino
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Privacy Policy