Resistance functions for spherical particles, droplets and bubbles in cylindrical tubes

First published:

Last Edited:

Number of edits:

Numerical computations are performed to evaluate the resistance functions for low Reynolds number flow past spherical particles, droplets and bubbles in cylindrical domains. Spheres of arbitrary radius a and radial position b move with arbitrary velocity U within a cylinder of radius R. The undisturbed fluid may be at rest, or subject to a pressure-driven flow with maximum velocity U 0 . The spectral boundary element method is employed to compute the resistance force for torque-free bodies in three cases: rigid solids, fluid droplets with viscosity ratio λ = 1, and bubbles with viscosity ratio λ = 0. A lubrication theory is developed to predict the limiting resistance of bodies near contact with the cylinder walls. Compact algebraic expressions are developed which accurately represent the numerical data over the entire range of particle positions 0 < b /( R − a ) < 1 for all particle sizes in the range 0 < a/R < 0.9. The resistance functions are consistent with known analytical results and are presented in a form suitable for further studies of particle migration in cylindrical vessels.

  • Source:
  • Tags:

Backlinks

These are the other notes that link to this one.

Nothing links here, how did you reach this page then?

Comment

Share your thoughts on this note. Comments are not public, they are messages sent directly to my inbox.
Aquiles Carattino
Aquiles Carattino
This note you are reading is part of my digital garden. Follow the links to learn more, and remember that these notes evolve over time. After all, this website is not a blog.
© 2024 Aquiles Carattino
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Privacy Policy