High-Throughput Detection and Sizing of Individual Low-Index Nanoparticles and Viruses for Pathogen Identification

First published:

Last Edited:

Number of edits:

Rapid, chip-scale, and cost-effective single particle detection of biological agents is of great importance to human health and national security. We report real-time, high-throughput detection and sizing of individual, low-index polystyrene nanoparticles and H1N1 virus. Our widefield, common path interferometer detects nanoparticles and viruses over a very large sensing area, orders of magnitude larger than competing techniques. We demonstrate nanoparticle detection and sizing down to 70 nm in diameter. We clearly size discriminate nanoparticles with diameters of 70, 100, 150, and 200 nm. We also demonstrate detection and size characterization of hundreds of individual H1N1 viruses in a single experiment.

  • Source:
  • Tags:

Backlinks

These are the other notes that link to this one.

Nothing links here, how did you reach this page then?

Comment

Share your thoughts on this note. Comments are not public, they are messages sent directly to my inbox.
Aquiles Carattino
Aquiles Carattino
This note you are reading is part of my digital garden. Follow the links to learn more, and remember that these notes evolve over time. After all, this website is not a blog.
© 2024 Aquiles Carattino
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Privacy Policy